Анаэробы клостридииКлостридии анаэробы – это целый ряд грамположительных облигатных бактерий, живущих и размножающихся исключительно в беск... |
Возникновение и развитие микроорганизмовФормирование планеты Земля происходило около 3,5 миллиардов лет назад, этот этап ее развития назывался догеологическим. ... |
Исследование консервовБактериологическое исследование готовых консервов проводится по ГОСТ 30425—97. Консервы. Метод определения промышленно... |
Кл. СпоровикиВ этот класс включены паразитические виды простейших. В процессе своего развития имеют стадию так называемой споры, ко... |
Санитарно-микробиологическое исследование объектов окружающей среды в лечебно-профилактических учрежОбъектами исследования при проведении бактериологического контроля лечебно-профилактических учреждений являются: во... |
Наверное, первым, кому удалось разглядеть вирусы, был шотландский врач Джон Броун Бист. В 1887 году при исследовании под микроскопом содержимого оспенного волдыря он разглядел какие-то крохотные точечки. По всей вероятности, это были вирусы коровьей оспы, самые крупные из известных вирусов.
Для того чтобы можно было хорошо разглядеть типичный вирус или хотя бы как-то его разглядеть, нужно приспособление несколько лучшее, чем обычный микроскоп. Таким приспособлением оказался электронный микроскоп, изобретенный в конце 30-х годов XX века. Электронный микроскоп обладал способностью увеличивать предметы в 100 000 раз, с его помощью можно было разглядеть объекты, имеющие 0,001 микрона в диаметре.
Однако электронный микроскоп имел свои недостатки. Объекты при рассмотрении должны были находиться в вакууме, что приводило к неизбежной их дегидратации и, следовательно, изменению формы. Срезы таких объектов, как клетки, должны были быть максимально тонкими. Изображение получалось только двумерным; электроны имели склонность проходить через весь биологический материал, поэтому его изображение сливалось с фоном.
В 1944 году американские ученые, астроном и физик Робли Кук Уильямс и электронный микроскопист Ральф Уолтер Грейстоун Викофф, совместно нашли остроумное решение этой проблемы. Первому идея пришла в голову Уильямсу, то есть он был астрономом и знал, что кратеры и вулканы на Луне обретают контрастное изображение только тогда, когда солнечные лучи падают на них под углом благодаря теням; следовательно, и трехмерное изображение вирусов можно получить, если удастся зафиксировать тени от них. Ученые решили обработать вирусные частицы парами металла, направленными под углом к предметному столику микроскопа. Поток частиц металла оставлял за каждой вирусной частицей чистую поверхность - «тень» вируса. Длина этой тени была пропорциональна высоте вирусной частицы, а благодаря тонкой пленке металла, покрывавшей вирус, вирусные частицы четко отличались от фона. По форме тени можно было судить о форме самого вируса.
Вирус коровьей оспы по форме оказался похожим на бочонок, его диаметр, как установили ученые, составил 0,25 микрометра, что приблизительно соответствовало размеру самой маленькой риккетсии. Вирус табачной мозаики, оказалось, походил на палочку 0,28 микрометра длиной и 0,015 микрометра в диаметре. Мелкие вирусы, такие, как вирусы полиомиелита, желтой лихорадки и ящура, представляли собой крошечные шарики, диаметр которых варьировался от 0,020 до 0,025 микрометра. То есть их размер был значительно меньше размера одного человеческого гена. Вес такой вирусной частицы превышал вес белковой молекулы среднего размера всего лишь в 100 раз. Масса вируса костёрной мозаики (костёр - однолетние травы рода злаков. - Примеч. пер.), наименьшего из тех, которые удалось охарактеризовать, составляет всего 4 500 000. Этот вирус в 10 раз меньше вируса табачной мозаики, что позволяет ему претендовать на звание самого маленького живого существа.
В 1959 году финский цитолог (цитология - наука о клетке) Алвар П. Вилска разработал новую конструкцию электронного микроскопа, изображения в котором получались при использовании электронов относительно низких скоростей. Электроны, движущиеся с низкими скоростями, обладают менее выраженной проникающей способностью по сравнению с высокоскоростными частицами, что позволило рассмотреть некоторые детали внутреннего строения вирусов. В 1960 году французский цитолог Гастон Дю По придумал способ, как получить электронно-микроскопическое изображение бактерий: он поместил их в капсулы, наполненные воздухом, что позволило рассмотреть под электронным микроскопом живые клетки. Правда, без напыления металла многие детали их строения оказались неразличимыми.
| Читайте: |
|---|
Человек и микроорганизмы - за кем будущее?Признавая роль Творца в построении мира, трудно себе представить, чтобы в такой работе ставилась задача создать среди ... |
Микробы под ногтямиКаждый человек просто обязан следить за чистотой своих рук, если он уважает себя и окружающих. Ученые американского инст... |
Мойте руки перед едой… но не антибактериальным мылом! (полезные микроорганизмы)Реклама различных дезинфицирующих средств постоянно пугает нас опасными бактериями, которых нужно уничтожать всеми воз... |
Детский иммунитетОсновные понятия об иммунитете Чтобы четко понимать, как улучшить состояние иммунной системы ребенка, необходимо знат... |
АнтигистаминыРазрешение проблемы отторжения тканей может стать поводом для возникновения новых проблем, на этот раз уже этических... |
Результат борьбыМиллионы лет борьбы между нами и микробами дали нам сложнейшую иммунную систему. Самое главное в защите против вирусов... |