Микроорганизмы:

Кокки

News image

Кокки (от греч. kókkos — «зерно») — бактерии шаровидной формы. Диаметр 1— 2 мкм, неподвижны, не образуют спор, ...

Термофильные стрептококки

News image

К ним относятся Streptococcus thermophilus. Термофильные стрептококки по сравнению с мезофильными лучше развиваются пр...

Основы вирусологии:

Вирус бешенства

Возбудитель бешенства относится к семейству Рабдови-русы. Семейство это включает вирусы бешенства, везикулярного стома...

Санитарно-микробиологическое исследование объектов окружающей среды в лечебно-профилактических учреж

Объектами исследования при проведении бактериологического контроля лечебно-профилактических учреждений являются: во...

Дезинфекция и стерилизация

Хирургические инструменты, соприкасающиеся с кровью, гноем и другими биологическими жидкостями больного, должны быть о...

Авторизация





Сканирующий атомно-силовой микроскоп

сканирующий атомно-силовой микроскоп

Атомно-силовой микроскоп (АСМ, англ. AFM — atomic-force microscope) — сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии зонда кантилевера с поверхностью исследуемого образца.

Обычно под взаимодействием понимается притяжение или отталкивание зонда кантилевера, вызванное силами Ван-дер Ваальса. При использовании специальных кантилеверов можно изучать электрические и магнитные свойства поверхности. В отличие от сканирующего туннельного микроскопа, с помощью АСМ можно исследовать как проводящие, так и непроводящие поверхности. Кроме того, АСМ способен измерять рельеф образца, погружённого в жидкость, что позволяет работать с органическими молекулами, включая ДНК. Пространственное разрешение атомно-силового микроскопа зависит от радиуса кривизны кончика зонда. Разрешение достигает атомарного по вертикали и существенно превышает его по горизонтали.

История изобретения

Атомно-силовой микроскоп был изобретён в 1986 году Гердом Биннигом и Кристофом Гербером в США. Атомно-силовой микроскоп применяется для измерения рельефа поверхности, модификации поверхности, а также для манипулирования микро - и нанообъектами на поверхности.

Принцип работы

Атомно-силовой микроскоп представляет собой систему образец + игла (кантилевер). На малых расстояниях между двумя атомами, один на подложке, другой на острие, при расстоянии около одного ангстрема действуют силы отталкивания, а на больших — силы притяжения. Величина этого усилия экспоненциально зависит от расстояния образец-игла. Отклонения зонда при действии близко расположенных атомов регистрируются при помощи измерителя наноперемещений, в частности, используют оптические, ёмкостные или туннельные сенсоры. Добавив к этой системе устройство развёртки по осям X и Y, получают сканирующий АСМ.

Основные технические сложности при создании микроскопа:

Преимущества и недостатки

В сравнении с растровым электронным микроскопом (РЭМ) атомно-силовой микроскоп обладает рядом преимуществ. Так, в отличие от РЭМ, который даёт псевдо трёхмерное изображение поверхности образца, АСМ позволяет получить истинно трёхмерный рельеф поверхности. Кроме того, непроводящая поверхность, рассматриваемая с помощью АСМ, не требует нанесения проводящего металлического покрытия, которое часто приводит к заметной деформации поверхности. Для нормальной работы РЭМ требуется вакуум, в то время как большинство режимов АСМ могут быть реализованы на воздухе или даже в жидкости. Данное обстоятельство открывает возможность изучения биомакромолекул и живых клеток. В принципе, АСМ способен дать более высокое разрешение чем РЭМ. Так было показано, что АСМ в состоянии обеспечить реальное атомное разрешение в условиях сверхвысокого вакуума. Сверхвысоковакуумный АСМ по разрешению сравним со сканирующим туннельным микроскопом и просвечивающим электронным микроскопом.

К недостатку АСМ при его сравнении с РЭМ также следует отнести небольшой размер поля сканирования. РЭМ в состоянии просканировать область поверхности размером в несколько миллиметров в латеральной плоскости с перепадом высот в несколько миллиметров в вертикальной плоскости. У АСМ максимальный перепад высот составляет несколько микрон, а максимальное поле сканирования в лучшем случае порядка 150×150 микрон². Другая проблема заключается в том, что при высоком разрешении качество изображения определяется радиусом кривизны кончика зонда, что при неправильном выборе зонда приводит к появлению артефактов на получаемом изображении.

Обычный АСМ не в состоянии сканировать поверхность также быстро, как это делает РЭМ. Для получения АСМ-изображения, как правило, требуется несколько минут, в то время как РЭМ после откачки способен работать практически в реальном масштабе времени, хотя и с относительно невысоким качеством. Из-за низкой скорости развёртки АСМ получаемые изображения оказываются искажёнными тепловым дрейфом, что уменьшает точность измерения элементов сканируемого рельефа. Для увеличения быстродействия АСМ было предложено несколько конструкций, среди которых можно выделить зондовый микроскоп, названный видеоАСМ. ВидеоАСМ обеспечивает получение удовлетворительного качества изображений поверхности с частотой телевизионной развёртки, что даже быстрее, чем на обычном РЭМ. Для коррекции вносимых термодрейфом искажений было предложено несколько методов.

Кроме термодрейфа АСМ-изображения могут также быть искажены гистерезисом пьезокерамического материала сканера и перекрёстными паразитными связями, действующими между X, Y, Z-элементами сканера. Для исправления искажений в реальном масштабе времени современные АСМ используют программное обеспечение (например, особенность-ориентированное сканирование) либо сканеры, снабжённые замкнутыми следящими системами, в состав которых входят линейные датчики положения. Некоторые АСМ вместо сканера в виде пьезотрубки используют XY и Z-элементы, механически несвязанные друг с другом, что позволяет исключить часть паразитных связей.

АСМ можно использовать для определения типа атома в кристаллической решётке.

Интересные следствия

Манипулятор АСМ и СТМ позволяет при габаритах в несколько сантиметров передвигать иглу с разрешением лучше 0,1 Ǻ. Если бы промышленный робот обладал подобной точностью перемещений при габаритах около метра, то иголкой, зажатой в манипуляторах, он мог бы нарисовать окружность диаметром в несколько нанометров.

Температурный коэффициент линейного расширения большинства материалов около 10−6. При размерах манипулятора в несколько сантиметров изменение температуры на 0,01° приводит к перемещению иглы вследствие теплового дрейфа на 1 Ǻ.




Читайте:


Добавить комментарий


Защитный код
Обновить

Микроорганизмы и человек:

Глубокоуважаемый микроб

Всего сто лет назад микробов, живущих в человеческом кишечнике, считали нахлебниками и вредителями. В последние годы ч...

Невидимый орган - микрофлора человека

На рубеже ХХI века сформировалось представление о микрофлоре организма человека как о еще одном органе, покрывающим в ...

Дисбактериоз

Принято считать, что микроорганизмы причиняют человеку только вред и такая постановка вопроса на бытовом уровне вполне...

Иммунитет:

На пути к вакцинации

Вирусы - наиболее грозные враги человека в живой природе (исключая, конечно, самого человека). Внедрившись в клетки ор...

Поиски вакцин

Победа над оспой послужила стимулом для поисков средств против других серьезных инфекционных болезней. Однако все усил...

Гамма-глобулины

В 1937 году благодаря появлению электрофоретических методов разделения белков биологи наконец-то обнаружили, с каким к...