Микроорганизмы:

Streptococcus mutans

News image

Streptococcus mutans — грамм-положительная, факультативно анаэробная бактерия, обычно обнаруживаемая в ротовой полости...

Найдены микроорганизмы, обладающие противоопухолевыми свойствами

News image

Что мы знаем о влиянии микроорганизмов? Ранее неизвестные науке мельчайшие существа, которые обладают биологической ...

Основы вирусологии:

ОСНОВЫ ВИРУСОЛОГИИ. Общие понятия о вирусах

Вирусология — одна из основных биологических наук. Занимается изучением вирусов. Вирусы — это организмы, не способные ...

Вирус полиомиелита

Полиомиелит (polios — серый, myelos — спинной мозг) (детский спинномозговой паралич, спинальный детский паралич, болез...

Отбор проб и предварительная обработка почвенных образцов для анализа

Санитарное обследование, выбор точек отбора проб Основными объектами, территории которых подлежат контролю органов ...

Авторизация





Хондриом

Хондриом – это совокупность всех митохондрий в одной клетке. Оказалось, что такая совокупность может быть различной в зависимости от типа клеток. Так, во многих клетках хондриом представлен разрозненными многочисленными митохондриями, разбросанными довольно равномерно по всей цитоплазме, как, например, во многих недифференцированных клетках ( 215а). В других случаях отдельные митохондрии локализуются группами в местах интенсивной траты АТФ, как например, в клетках анализаторов сетчатки. В обоих этих случаях митохондрии функционируют поодиночке, их кооперативная работа, возможно, координируется какими-то сигналами из цитоплазмы. Однако существует и совершенно иной тип хондриома, когда вместо мелких одиночных разрозненных митохондрий в клетке располагается одна гигантская разветвленная митохондрия ( 215в). Такие митохондрии часто встречаются у одноклеточных зеленых водорослей (например у Chlorella). В этих случаях мы видим не отдельные митохондрии, а сложную митохондриальную систему, сеть или, как ей дали название, митохондриальный ретикулум (Reticulum miyochondriale). Каков биологический смысл появления такой гигантской разветвленной митохондриальной структуры, объединенной в одно целое своими внешними и внутренними мембранами? Согласно хемоосмотической теории, возникший на поверхности внутренней мембраны электрохимический протонный градиент равномерно распределяется по поверхности внутренней мембраны митохондрий, она эквипотенциальна в любой своей точке. Поэтому в любой точке поверхности внутренней мембраны такой разветвленной митохондрии может идти синтез АТФ, который будет поступать в любую точку цитоплазмы, где в этом есть необходимость. Т.е. такие разветвленные митохондрии могут представлять собой “электрический кабель”.

То, что это действительно имеет место, было доказано экспериментально. Были выбраны растущие в культуре ткани фибробласты, в цитоплазме которых имеются длинные нитчатые митохондрии, достигающие 60 мкм. В живых клетках их можно наблюдать с помощью флуорохрома этилродамина, который накапливается в матриксе только работающих, синтезирующих АТФ, митохондрий. Если снять разность потенциалов на внутренней мембране митохондрий, воздействуя на клетки динитрофенолом, то свечение этилродамина в митохондриях прекращается, параллельно падению синтеза АТФ. При этом гашение флуоресценции происходит во всех митохондрий. Это наблюдение показывает, что этилродамин, как протонный краситель, накапливается в матриксе митохондрий, только тогда, когда есть разность потенциалов на внутренней мембране митохондрий, т.е. когда происходит синтез АТФ.

Но динитрофенол, встраиваясь в мембрану, создает “пробой” на всех митохондриях данной клетки. А как “выключить” одну митохондрию? Для этого используется лазерный или ультрафиолетовый микролуч, который можно точно направить на избранную экспериментатором митохондрию ( 216). Делается это с помощью специальной оптической системы, которая позволяет одновременно рассматривать объект (в данном случае живые клетки с окрашенными родамином митохондриями) и навести на избранную деталь тонкий пучок лазера или ультрафиолетового света. При облучении отдельной митохондрии происходит в ней гашение флуоресценции родамина из-за того, что в результате пробоя внутренней мембраны митохондрии разность потенциалов на ней падает, и родамин как бы вытекает из матрикса митохондрии. При этом соседние митохондрии не меняют своего свечения и продолжают синтез АТФ. Что же произойдет, если облучить небольшой участок разветвленной или же очень длинной митохондрии? В эксперименте одна из протяженных светящихся митохондрий фибробласта была локально поражена узким (0,5 мкм) микролучом оптического лазера. В результате этого вся длинная митохондрия потухла, в то время как соседние оставались без изменений ( 216б). Поражение микролучом участков свободной от митохондрии цитоплазмы не приводило к тушению митохондрий. Это говорит о том, что точечный пробой мембраны митохондрии приводит к снятию разности потенциалов не только в точке пробоя, но по всей длине митохондрии, которая представляет собой проводник с эквипотенциальной поверхностью. Следовательно, такие длинные нитчатые митохондрии фибробластов могут представлять собой электрические проводники, могущие передавать разность потенциалов на митохондриальных мембранах на большие расстояния и объединять удаленные участки цитоплазмы.

Это значит, что и в случае гигантских разветвленных митохондрий в любой ее точке может на внутренней мембране накопиться потенциал, достаточный для того, чтобы начался синтез АТФ. С этих позиций митохондриальный ретикулум представляет собой как бы электрический проводник, кабель, соединяющий отдаленные точки такой системы. Митохондриальный ретикулум может оказаться очень полезным не только для мелких подвижных клеток, таких как хлорелла, но и для более крупных, там, где требуется кооперация и синхронизация в работе многих структурных единиц таких как, например, миофибриллы в скелетных мышцах.

Как известно, скелетные мышцы состоят из массы мышечных волокон, симпластов, содержащих множество ядер. Длина таких мышечных волокон достигает 40 мкм, при толщине 0,1 мкм – это гигантская структура, содержащая великое множество миофибрилл, все из которых сокращаются одновременно, синхронно. Для такого сокращения к каждой единице сокращения, к каждому саркомеру миофибрилл, должно быть доставлено большое количество АТФ. На продольных ультратонких срезах скелетных мышц в электронном микроскопе видны многочисленные округлые мелкие сечения митохондрий, располагающихся в соседстве с саркомерами ( 217). Если же исследовать поперечные срезы мышечных волокон на уровне z-дисков, то видно, что мышечные митохондрии представляют собой не мелкие шарики или палочки, а как бы паукообразные структуры, отростки которых могут ветвиться и простираться на большие расстояния, иногда через весь поперечник мышечного волокна. При этом разветвления митохондрий окружают каждую миофибриллу в мышечном волокне, снабжая их АТФ, необходимого для мышечного сокращения. Следовательно, в плоскости z-диска митохондрии представлены типичным митохондриальным ретикулумом – единой митохондриальной системой. Такой пласт или этаж митохондриального ретикулума повторяется дважды на каждый саркомер, а все мышечное волокно имеет тысячи поперечно расположенных “поэтажных” пластов митохондриального ретикулума. Было обнаружено, что между “этажами” вдоль миофибрилл располагаются нитчатые митохондрии, соединяющие эти митохондриальные пласты. Тем самым создается трехмерная картина митохондриального ретикулума, проходящего через весь объем мышечного волокна ( 218).

Здесь же было обнаружено, что как между ответвлениями митохондриального ретикулума, так и между ним и нитевидными продольными митохондриями существуют специальные межмитохондриальные соединения или контакты (ММК). Они образованы плотно прилегающими наружными митохондриальными мембранами контактирующих митохондрий, межмембранное пространство и мембраны в этой зоне имеют повышенную электронную плотность ( 219). Было сделано предположение, что через эти специальные образования может происходить функциональное объединение соседних митохондрий и митохондриальных ретикулумов в единую, кооперативную энергетическую систему. Все миофибриллы в мышечном волокне сокращаются синхронно по всей их длине, следовательно, и поступление АТФ на любом участке этой сложной машины тоже должно происходить синхронно, а это может происходить лишь в том случае, если огромное количество разветвленных митохондрий-проводников будет связано друг с другом клеммами-контактами (ММК).

Доказать то, что ММК действительно участвуют в энергетическом объединении митохондрий друг с другом удалось на другом типе поперечно-исчерченнных мышц – на кардиомиоцитах, клетках сердечных мышц.

Оказалось, что хондриом клеток сердечной мышцы не образует ветвящихся структур, а представлен множеством небольших вытянутых митохондрий, располагающихся без особого порядка между миофибриллами. Однако было найдено, что все соседние митохондрии стыкуются друг с другом с помощью митохондриальных контактов такого же типа, как в скелетной мышце, только их число очень велико: в среднем на одну митохондрию приходится 2-3 ММК, которые связывают митохондрии в единую цепь, где каждым звеном такой цепи (Streptio mitochondriale) является отдельная митохондрия ( 220). Такой тип хондриома также может служить целям синхронного сокращения всех саркомеров в миофибриллах кардиомиоцитов. Для такой кооперативной координации митохондрий должны служить множественные межмитохондриальные контакты ( 221, 222).

Для доказательства этой гипотезы были использованы кардиомиоциты эмбрионов крысы в культуре ткани. Эти клетке имеют гетерогенные по размеру и форме митохондрии, расположенные между миофибриллами ( 223). В электронном микроскопе было обнаружено, что между некоторыми митохондриями были видны ММК, объединяющие их в небольшие группы - кластеры. В дальнейшем были проведены эксперименты, аналогичные тем, которые были сделаны на культуре фибробластов: митохондрии живых кардиомиоцитов окрашивали этилродамином, а затем одну из митохондрий в группе облучали лазерным микропучком. Облучение одиночных митохондрий приводило к быстрому их гашению. В одних случаях погасала только облученная митохондрия, в других – теряла люминесценцию вся группа митохондрий ( 224). Электронная микроскопия показала, что в последнем случае митохондрии в кластере были связаны друг с другом с помощью ММК. Следовательно, если одиночные митохондрии теряют этилродамин после лазерного укола вследствие электрического пробоя митохондриальной мембраны, то гашение группы митохондрий, связанных ММК, доказывает, что ММК, как клеммы, объединяют в единую цепь потенциалы одиночных митохондрий. По всей вероятности, области ММК проницаемы для протонов, которые могут передаваться с внутренней митохондриальной мембраны одной митохондрии на внутреннюю мембрану другой, и тем самым объединять митохондрии в единую энергетическую систему.

Как оказалось, межмитохондриальные контакты (ММК), как обязательная структура сердечных клеток, встречаются не только у крыс. Они обнаружены в кардиомиоцитах как желудочков, так и предсердий всех позвоночных животных: млекопитающих, птиц, пресмыкающихся, амфибий и костистых рыб. Более того ММК были обнаружены (но в меньшем числе) в клетках сердца некоторых насекомых и моллюсков. Эти наблюдения говорят о чрезвычайно важной биологической роли этих структур, характеризующих митохондрии интенсивно и постоянно работающих клеток сердца.

Было обнаружено, что количество ММК в кардиомиоцитах изменяется в зависимости от функциональной нагрузки на сердце. Так, если у крыс вызвать экспериментальное усиление работы сердечной мышцы, например при компенсаторной гипертрофии миокарда (частичная перевязка аорты), то количество ММК увеличивается почти вдвое. Увеличивается число ММК и при повышении физических нагрузок животных. Наоборот, при ограничении подвижности животных, находящихся в тесных камерах более 4-х месяцев (как в космическом корабле), при падении нагрузки на сердечную мышцу, происходит резкое сокращение числа ММК.

Те же закономерности наблюдается и у других животных в естественных условиях их жизни. Так уменьшается число ММК у зимних спящих летучих мышей, у зимующих сурков. Резко возрастает число ММК в кардиомиоцитах летающих стрижей, по сравнению с их птенцами до вылета из гнезда. Из этих наблюдений можно сделать обобщение: чем выше функциональная нагрузка на кардиомиоциты, чем выше потребление энергии, тем большее количество ММК связывает отдельные митохондрии в единую кооперативную систему.

На рис. 225 представлены варианты организации хондриома в различных клетках. Хондриом может иметь различную композицию в зависимости от энергетических потребностей клетки. В простейшем (и чаще встречающемся ) случае он может быть представлен множеством разрозненных небольших митохондрий, функционирующих независимо друг от друга и снабжающих АТФ небольшие участки цитоплазмы. В другом случае длинные и разветвленные митохондрии могут энергетически обеспечивать отдаленные друг от друга участки клетки. Вариантом такой протяженной системы может быть хондриом типа митохондриального ретикулума, который встречается как у одноклеточных, так и у многоклеточных организмов. Особенно сложно этот вид хондриома выражен в скелетных мышцах млекопитающих, где группы гигантских разветвленных митохондрий связаны друг с другом с помощью ММК. Вообще же наличие ММК характерно для хондриомов сократимых структур. Особенно обильно ММК представлены в клетках сердечных мышц, где они функционально связывают множественные отдельные митохондрии в единую разветвленную цепь.




Читайте:


Добавить комментарий


Защитный код
Обновить

Микроорганизмы и человек:

Открытие причины малярии

Из года в год малярия свирепствовала на Земле и уносила больше жизней, чем какое-либо другое инфекционное заболева­ние...

Борьба с истощением

То, что микробиота может управлять метаболизмом хозяина, уже не вызывает сомнения. Исследования лаборатории Гордона, п...

Дисбактериоз

Принято считать, что микроорганизмы причиняют человеку только вред и такая постановка вопроса на бытовом уровне вполне...

Иммунитет:

Распространение вакцинации

После того как был найден способ предупреждения оспы - вакцина­ция - распространился по Европе со сверхъестественной б...

Победа над полиомиелитом

В конце 40-х годов XX столетия американские исследователи Джон Франклин Эндерс, Томас Хакл Уэллер и Фредерик Чап-мен Р...

Антигистамины

Разрешение проблемы отторжения тканей может стать по­водом для возникновения новых проблем, на этот раз уже эти­ческих...